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What is the Problem? 

Time-sensitive systems in uncertain environments have complex 
behaviors. How do we validate correct timing in such systems? 
• Exact probabilistic verification is infeasible due to model size 
• Black box testing does not yield bounded predictions 
• Need formal approach for dealing with uncertainty 

– Accurate, bounded, probabilistic results 
– In reasonable time even for rare outcomes 

 
Use statistical model checking to do a “smart sampling of the world” 

• Simulation captures both random variables and timing (scheduling) 
• Importance sampling “tilts” input distributions for efficient probability 

estimation of “rare” events 

Note: We use “probability estimation” based statistical model 
checking. There is also a “hypothesis testing” based version. 
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Statistical Model 
Checker 

Any system ℳ that 
takes random inputs 

Probabilistic 
Temporal Logic 
Formula 𝝓𝝓 

Estimated 
Probability that 
ℳ ⊨ 𝝓𝝓 with relative 
error 𝑹𝑹𝑹𝑹 

Statistical Model Checking (SMC) 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =  
𝑺𝑺𝑺𝑺𝑺𝑺.𝑫𝑫𝑫𝑫𝑫𝑫.
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴

 

• System properties described in formal language (UTSL, BLTL, etc.) 
• Property is tested on “sample trajectories” (sequence of states) 
• Each outcome can be treated as a Bernoulli random variable (i.e., coin flip) 

Based on Monte-Carlo 
Simulation 
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Probability Estimation with SMC 
SMC Basics 
• Indicator function 𝐼𝐼 𝑥⃑𝑥 = 1 iff property holds for input 𝑥⃑𝑥. 

• Relative Error 𝑅𝑅𝑅𝑅 𝑝̂𝑝 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑝𝑝�)
𝐸𝐸[𝑝𝑝�]

 is measure of accuracy. 
• Draw random samples from input distribution 𝑓𝑓(𝑥⃑𝑥) until target 

Relative Error is met. 
• Estimated probability that property holds is: 

𝑝̂𝑝 =
1
𝑁𝑁
�𝐼𝐼(𝑥⃑𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

=
1

10
= 0.1 𝑅𝑅𝑅𝑅(𝑝̂𝑝) =

0.32
0.1

= 3.2 

Importance Sampling 
• Modify input distribution to make rare properties more visible. 
• Weighting function 𝑊𝑊(𝑥⃑𝑥) maps solution back to original 

problem. 
• Reduced relative error with same number of samples. 

𝑝̂𝑝 =
1
𝑁𝑁�𝐼𝐼 𝑥⃑𝑥𝑖𝑖 𝑊𝑊(𝑥⃑𝑥𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

=
0.2 + 0.5 + 0.3

10 = 0.1 

𝑅𝑅𝑅𝑅(𝑝̂𝑝) =
0.18
0.1 = 1.8 
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Osmosis SMC Tool 
Osmosis is a tool for Statistical 
Model Checking (SMC) with 
Semantic Importance Sampling. 
• Input model is written in subset of C. 
• ASSERT() statements in model 

indicate conditions that must hold. 
• Input probability distributions defined 

by the user. 
• Osmosis returns the probability that 

at least one of the ASSERT() 
statements does not hold. 

• Uses dReal1 solver to build 𝐼𝐼∗(𝑥⃑𝑥). 
• Simulation halt condition based on: 

– Target relative error, or 
– Set number of simulations 

Osmosis Main Algorithm 

1 http://dreal.cs.cmu.edu/ 

𝒙𝒙 𝑰𝑰(𝑥⃑𝑥): Indicator Function 
defines fault region 

1. Generate approximation of fault region  

𝑰𝑰∗(𝑥⃑𝑥): Abstract Indicator 
Function defines over-
approximation  

Input space 

2. Conduct SMC and calc. failure prob. 

𝒙𝒙 a) 𝑝̂𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =
5

20 
# in Fault 
Total # 

𝑝̂𝑝 = 𝑝̂𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝∗ = 0.23 

c) Failure prob. estimate 
is product of two values 

b) 𝑝𝑝∗ =
6

64 
Fraction of 
input 𝑰𝑰∗(𝑥⃑𝑥) 
covers  
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𝑰𝑰∗(𝑥⃑𝑥) Generation Algorithm 
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Algorithm: 
1. Set the current “cube” 

as the full range of all 
inputs.  

2. Apply dReal to the 
current cube. 

3. If the result is “SAT”, 
split cube into two equal 
probability cubes on 
one variable, and 
recursively apply at 
Step 2. 

 
 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝟎𝟎. 𝟓𝟓 𝟎𝟎. 𝟕𝟕𝟕𝟕 𝟏𝟏. 𝟎𝟎 𝟎𝟎. 𝟎𝟎 

𝟎𝟎. 𝟐𝟐𝟐𝟐 

𝟎𝟎. 𝟓𝟓 
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Example: Air Hockey Problem 

Air Hockey Problem 
• Table with a moving puck and a 

fixed target. 
• Puck rebounds without friction. 

Inputs 
• Angle – Initial angle at which puck 

is hit. 
• Distance – Total distance of travel 

for puck. 
Failure Condition 
• Puck stops on target (red dot). 

Challenges 
• Multiple failure areas in input space. 
• Complex structure of failure area. 

angle distance 

OK 

FAIL 
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Fault Map for Air Hockey Problem 

Fault map shows area of input 
space where faults are located. 
• Plotted in CDF space. 
• Green area indicates input space 

included in 𝐼𝐼∗(𝑥𝑥). 
• Red area indicates input space 

include in 𝐼𝐼(𝑥𝑥). 
 

Recursion Depth: 12 
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Sample Size vs Recursion Depth (Air Hockey) 
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Recursion Depth

Simulation effort with SIS decreases exponentially with recursion depth. 

Target 𝑅𝑅𝑅𝑅:  0.01 



11 
Fall 2014 SEI Research Review 
Hansen – October 28, 2014 
© 2014 Carnegie Mellon University 

𝒑𝒑∗ vs Recursion Depth (Air Hockey) 
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Actual SMC Fault Probability Estimate 

Upper-bound 𝑝𝑝∗ becomes more accurate as recursion depth increases. 

𝒑𝒑∗
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Effect of SIS Optimizations 
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No Optimization

Opt. 1

Opt. 2

Opt. 1&2

Optimization 2 results in greatest benefit with factor of two reduction in number of 
calls to dReal.  Small additional benefit by combining both methods. 

SAT 

unsat (SAT) 

Optimization 1 
No call to dReal if first 
child call is unsat. 
 

SAT 

unsat (SAT) 

Optimization 2 
Use counter-example 
from parent to avoid 
dReal calls on children. 
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Conclusion 
Semantic Importance Sampling 
• Create approximation of fault region using abstraction. 
• Create an alternate input distribution for importance sampling. 
• Level of approximation (recursion depth) is user tunable. 
• Can reduce SMC sample size by orders of magnitude. 

Osmosis tool 
• Applies semantic importance sampling on a C-like specification. 
• Uses the dReal SMT solver to build approximate fault region model. 
• Can be applied when there are multiple fault regions. 
• Optimization techniques can nearly halve number of dReal tests required. 
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